p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.33D4, C24.181C23, C22⋊C4⋊7D4, C2.18C2≀C22, (C22×C4).84D4, C23.34(C2×D4), C23⋊3D4.6C2, C23.8Q8⋊2C2, C23.11(C4○D4), C23.23D4⋊2C2, C23.9D4⋊15C2, (C23×C4).28C22, C22.226C22≀C2, C22.68(C4⋊D4), (C22×D4).81C22, C22.38(C4.4D4), C2.18(C23.7D4), C2.17(C23.10D4), C22.34(C22.D4), (C2×C23⋊C4)⋊10C2, (C2×C22⋊C4).20C22, SmallGroup(128,776)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.33D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, faf=ab=ba, ac=ca, ad=da, eae-1=abcd, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, de=ed, df=fd, fef=be-1 >
Subgroups: 504 in 191 conjugacy classes, 42 normal (20 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C23⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C22.D4, C23×C4, C22×D4, C23.9D4, C23.8Q8, C23.23D4, C2×C23⋊C4, C23⋊3D4, C24.33D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C23.10D4, C2≀C22, C23.7D4, C24.33D4
Character table of C24.33D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
(1 28)(2 26)(3 23)(4 21)(5 24)(6 22)(7 25)(8 27)(9 20)(10 30)(11 32)(12 18)(13 31)(14 19)(15 17)(16 29)
(1 3)(2 4)(5 7)(6 8)(9 10)(11 12)(13 15)(14 16)(17 31)(18 32)(19 29)(20 30)(21 26)(22 27)(23 28)(24 25)
(1 5)(2 6)(3 7)(4 8)(9 15)(10 13)(11 16)(12 14)(17 20)(18 19)(21 27)(22 26)(23 25)(24 28)(29 32)(30 31)
(1 2)(3 4)(5 6)(7 8)(9 12)(10 11)(13 16)(14 15)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 10)(2 11)(3 9)(4 12)(5 16)(6 13)(7 14)(8 15)(17 22)(18 26)(19 24)(20 28)(21 32)(23 30)(25 29)(27 31)
G:=sub<Sym(32)| (1,28)(2,26)(3,23)(4,21)(5,24)(6,22)(7,25)(8,27)(9,20)(10,30)(11,32)(12,18)(13,31)(14,19)(15,17)(16,29), (1,3)(2,4)(5,7)(6,8)(9,10)(11,12)(13,15)(14,16)(17,31)(18,32)(19,29)(20,30)(21,26)(22,27)(23,28)(24,25), (1,5)(2,6)(3,7)(4,8)(9,15)(10,13)(11,16)(12,14)(17,20)(18,19)(21,27)(22,26)(23,25)(24,28)(29,32)(30,31), (1,2)(3,4)(5,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10)(2,11)(3,9)(4,12)(5,16)(6,13)(7,14)(8,15)(17,22)(18,26)(19,24)(20,28)(21,32)(23,30)(25,29)(27,31)>;
G:=Group( (1,28)(2,26)(3,23)(4,21)(5,24)(6,22)(7,25)(8,27)(9,20)(10,30)(11,32)(12,18)(13,31)(14,19)(15,17)(16,29), (1,3)(2,4)(5,7)(6,8)(9,10)(11,12)(13,15)(14,16)(17,31)(18,32)(19,29)(20,30)(21,26)(22,27)(23,28)(24,25), (1,5)(2,6)(3,7)(4,8)(9,15)(10,13)(11,16)(12,14)(17,20)(18,19)(21,27)(22,26)(23,25)(24,28)(29,32)(30,31), (1,2)(3,4)(5,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10)(2,11)(3,9)(4,12)(5,16)(6,13)(7,14)(8,15)(17,22)(18,26)(19,24)(20,28)(21,32)(23,30)(25,29)(27,31) );
G=PermutationGroup([[(1,28),(2,26),(3,23),(4,21),(5,24),(6,22),(7,25),(8,27),(9,20),(10,30),(11,32),(12,18),(13,31),(14,19),(15,17),(16,29)], [(1,3),(2,4),(5,7),(6,8),(9,10),(11,12),(13,15),(14,16),(17,31),(18,32),(19,29),(20,30),(21,26),(22,27),(23,28),(24,25)], [(1,5),(2,6),(3,7),(4,8),(9,15),(10,13),(11,16),(12,14),(17,20),(18,19),(21,27),(22,26),(23,25),(24,28),(29,32),(30,31)], [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11),(13,16),(14,15),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,10),(2,11),(3,9),(4,12),(5,16),(6,13),(7,14),(8,15),(17,22),(18,26),(19,24),(20,28),(21,32),(23,30),(25,29),(27,31)]])
Matrix representation of C24.33D4 ►in GL6(𝔽5)
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 4 | 4 | 4 | 3 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 4 | 4 | 3 |
0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 3 | 1 |
0 | 0 | 0 | 2 | 2 | 2 |
G:=sub<GL(6,GF(5))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,1,0,0,0,0,4,0,0,0,0,1,4,0,0,0,0,0,3,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,4,0,0,0,1,0,4,0,0,0,0,0,4,0,0,0,0,0,3,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,4,0,0,0,0,4,4,1,0,0,0,0,4,1,0,0,0,0,3,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,3,0,0,0,3,0,3,2,0,0,0,0,3,2,0,0,0,0,1,2] >;
C24.33D4 in GAP, Magma, Sage, TeX
C_2^4._{33}D_4
% in TeX
G:=Group("C2^4.33D4");
// GroupNames label
G:=SmallGroup(128,776);
// by ID
G=gap.SmallGroup(128,776);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,422,387,58,1411,4037]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,f*a*f=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f=b*e^-1>;
// generators/relations
Export